

Home Search Collections Journals About Contact us My IOPscience

The first order phase transition and superconductivity in $BaNi_2As_2$ single crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys.: Condens. Matter 20 342203 (http://iopscience.iop.org/0953-8984/20/34/342203)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 13:56

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 20 (2008) 342203 (4pp)

FAST TRACK COMMUNICATION

The first order phase transition and superconductivity in BaNi₂As₂ single crystals

F Ronning¹, N Kurita¹, E D Bauer¹, B L Scott¹, T Park^{1,2}, T Klimczuk^{1,3}, R Movshovich¹ and J D Thompson¹

¹ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

² Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

³ Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland

Received 18 July 2008, in final form 20 July 2008 Published 6 August 2008 Online at stacks.iop.org/JPhysCM/20/342203

Abstract

We report the synthesis and physical properties of single crystals of stoichiometric BaNi₂As₂ that crystallizes in the ThCr₂Si₂ structure with lattice parameters a = 4.112(4) Å and c = 11.54(2) Å. The resistivity and heat capacity show a first order phase transition at $T_0 = 130$ K with a thermal hysteresis of 7 K. The Hall coefficient is weakly temperature dependent from room temperature to 2 K where it has a value of $-4 \times 10^{-10} \Omega$ cm Oe⁻¹. The resistivity, ac susceptibility, and heat capacity provide evidence for bulk superconductivity at $T_c = 0.7$ K. The Sommerfeld coefficient at T_c is 11.6 ± 0.9 mJ mol⁻¹ K⁻². The upper critical field is anisotropic with initial slopes of $dH_{c2}^c/dT = -0.19$ T K⁻¹ and $dH_{c2}^{ab}/dT = -0.40$ T K⁻¹, as determined from the resistivity.

(Some figures in this article are in colour only in the electronic version)

The large superconducting transition temperatures found in the oxypnictide system has stimulated a great deal of research activity world-wide. Perhaps, even more remarkable than the large transition temperatures (up to 55 K for SmFeAs(O,F) [1]) is the large tunability these systems possess. Superconductivity has been found in RTPn(O,F) (ZrCuSiAs structure type) at ambient pressure with rare-earth R = La, Ce, Pr, Nd, Sm, or Gd; transition metal T = Fe or Ni, and Pnictide Pn = P or As [1–12]. Some compounds require chemical substitution, while for others the parent compounds also superconduct. Furthermore, superconductivity has also been discovered in the related ThCr₂Si₂ structure type, where it has been found by doping AFe_2As_2 on the A site (with A = Ba, Sr, Ca, Eu) [13–17], under pressure in AFe_2As_2 [18–20], and at ambient pressure in the stoichiometric compounds BaNi₂P₂ [21], LaRu₂P₂ [22], CsFe₂As₂, and KFe₂As₂ [15].

The common structural element between the ZrCuSiAs and Th Cr_2Si_2 structure types are T_2Pn_2 layers which are alternately stacked with R_2O_2 or A layers in the RTPnO

and AT_2Pn_2 families, respectively. The fact that the highest transition temperatures in both families occur in compounds containing Fe₂As₂ layers suggests that the T₂Pn₂ layers are the active layers while the R₂O₂ or A layers act as a spacer that can fine tune the electronic structure of the T₂Pn₂ layer and act as a charge reservoir layer, but do not control the physics. Since superconductivity has been found in LaNiAsO [9], one might expect that superconductivity would also be found in the ThCr₂Si₂ structure type with an active Ni₂As₂ layer.

Following this reasoning, we have synthesized single crystals of BaNi₂As₂. We find a first order phase transition at $T_0 = 130$ K (cooling) with 7 K thermal hysteresis. By analogy with AFe₂As₂ (A = Ba, Sr, Ca) [16, 23–26] we identify this transition as a magnetic spin-density wave (SDW) transition concomitant with a structural transition. Here we show that BaNi₂As₂ is also a bulk superconductor at $T_c = 0.7$ K, well below the first order phase transition T_0 .

Single crystals of $BaNi_2As_2$ were grown in Pb flux in the ratio Ba:Ni:As:Pb = 1:2:2:20. The starting elements were

Figure 1. Transport properties of BaNi₂As₂. (a) In-plane resistivity $(I \parallel ab)$. The inset demonstrates the thermal hysteresis at the transition. (b) Hall coefficient $R_{\rm H}$ of BaNi₂As₂. The dashed line indicates the first order transition temperature.

Figure 2. Specific heat versus temperature is shown for BaNi₂As₂. The inset displays the low temperature heat capacity. The solid line is a fit to $C/T = \gamma + \beta T^2 + \alpha T^4$.

placed in an alumina crucible and sealed under vacuum in a quartz ampoule. The ampoule was placed in a furnace and heated to $600 \,^{\circ}$ C at $100 \,^{\circ}$ C h⁻¹, and held at that temperature

Figure 3. (a) ac magnetic susceptibility $\chi_{ac}(T)$ of BaNi₂As₂ with applied magnetic field. (b) Low temperature specific heat of BaNi₂As₂.

for 4 h. This sequence was repeated at 900 °C and at a maximum temperature of 1075 °C, with hold times of 4 h, each. The sample was then cooled slowly (\sim 7 °C h⁻¹) to 650 °C, at which point the excess Pb flux was removed with the aid of a centrifuge. The resulting plate-like crystals of typical dimensions 1 × 1 × 0.1 mm³ are micaceous and air sensitive and are oriented with the *c*-axis normal to the plate. BaNi₂As₂ crystallizes in the ThCr₂Si₂ tetragonal structure (space group no. 139). Single crystal refinement [$R(I > 2\sigma) = 5.37\%$] at room temperature gives lattice parameters a = 4.112(4) Å and c = 11.54(2) Å and fully occupied atomic positions Ba 2a(0, 0, 0), Ni 4d(0.5, 0, 0.25) and As 4e(0, 0, *z*) with *z* = 0.3476(3) consistent with previous reports [27, 28]. Powder x-ray diffraction data was consistent with the single crystal diffraction data.

Specific heat measurements were carried out using an adiabatic relaxation method in a commercial cryostat from 2 to 300 K, and in a dilution refrigerator down to 150 mK. Electrical transport measurements were performed using a LR-700 resistance bridge with an excitation current of 0.2 mA, on samples for which platinum leads were spot welded. X-ray data were collected at room temperature on a Bruker

Figure 4. Evidence for superconductivity from the resistive transition for $H \parallel \hat{c}$ (a) and $H \parallel \hat{ab}$ (b). (c) Upper critical field for $H \parallel \hat{c}$ and $H \parallel \hat{ab}$ as determined by the dashed lines in panels (a) and (b). The current was always perpendicular to the magnetic field.

APEXII diffractometer, with charge-coupled-device detector, and graphite monochromated Mo K α ($\lambda = 0.71073$ Å) radiation. The data were corrected for absorption and Lorentz-polarization effects.

Resistivity and heat capacity shown in figures 1 and 2, respectively, provide clear evidence for a first order transition that occurs at 130 K upon cooling, and at 137 K upon warming, consistent with earlier magnetic susceptibility results on polycrystalline samples [28]. The resistivity anomaly is very similar to that observed in CaFe₂As₂ [16, 25, 26] with a RRR (= $\rho(300 \text{ K})/\rho(4 \text{ K})$) of 5, while the absolute magnitude of the resistivity is more than an order of magnitude less than in the AFe₂As₂ compounds. The thermal hysteresis of 7 K is clearly observed in the resistivity data shown as an inset to figure 1. The Hall coefficient is negative over the entire temperature range, and displays a weak anomaly at T_0 . The value at 2 K is $R_{\rm H} = -4 \times 10^{-10} \ \Omega \ {\rm cm \ Oe^{-1}}$. The sharp anomaly at 137 K in the heat capacity data of figure 2 (taken upon warming) is also consistent with a first order phase transition. From 2 to 6 K the heat capacity data was fit to $C = \gamma T + \beta T^3 + \alpha T^5$. This yields a Sommerfeld coefficient $\gamma = 10.8 \pm 0.1$ mJ mol⁻¹ K⁻². Assuming that the T^3 term is due solely to acoustic phonons, the β coefficient =1.10±0.01 mJ mol⁻¹ K⁻⁴ gives a Debye temperature Θ_D = 206 K.

At low temperatures, ac susceptibility, heat capacity, and resistivity provide evidence for bulk superconductivity. As shown in figure 3(a) the onset of diamagnetism starts at 0.7 K and is estimated to be >50% volume fraction, by comparing the signal to that of a piece of Pb with a comparable volume. The low temperature heat capacity data on a second sample shown in figure 3(b) reveals a sharp anomaly at 0.68 K with a jump $\Delta C = 11.15$ mJ mol⁻¹ K⁻¹. Taking the value of the Sommerfeld coefficient at T_c ($\gamma = 12.5$ mJ mol⁻¹ K⁻²) gives⁴ the ratio $\Delta C/\gamma T_c = 1.31$. The large ratio confirms the bulk nature of superconductivity, but further work is necessary to determine whether the heat capacity data can reveal any sign of unconventional superconducting behavior.

From the resistivity data at low temperatures shown in figure 4 we can extract additional information. The resistivity sample has trace amounts of Pb impurities which gives a partial

⁴ We attribute the difference in γ obtained from the data at $T_{\rm c}$ and the extrapolation from higher temperature to the difficulty in subtracting the addenda at low temperatures.

Fast Track Communication

transition at 7.2 K. At roughly 1.5 K there is an additional downturn in the resistivity data, which then goes to zero abruptly at 0.7 K. Since the bulk transition occurs sharply at 0.7 K in zero field, we attribute the downturn at 1.5 K to an unknown impurity phase which is also superconducting. Upon application of a magnetic field, we estimate the upper critical field for both the bulk superconductor and the impurity phase. We extract the upper critical field, $H_{c2}(T)$ for BaNi₂As₂ by taking the temperature at which $\rho = 0.5 \ \mu\Omega$ cm (the lower dashed line in figures 4(a) and (b)). This gives initial slopes of $dH_{c2}^{ab}/dT = -0.396 \text{ T K}^{-1}$ and $dH_{c2}^{c}/dT = -0.186 \text{ T K}^{-1}$ with an anisotropy of 2.1. From these initial slopes we estimate the zero temperature upper critical field $H_{c2}(0) =$ $-0.7T_{c}dH_{c2}/dT_{c}$ [29] to be 0.19 T and 0.09 T for $H \parallel ab$ and $H \parallel c$, respectively, yielding a Ginzburg–Landau coherence length $\xi^{ab} = 420$ Å and $\xi^c = 610$ Å, using the formula $\xi = (\Phi/2\pi H_{c2}(0))^{1/2}$, where $\Phi = 2.07 \times 10^{-7}$ Oe cm² is the flux quantum. Surprisingly, for the magnetic field in the abplane the resistive anomaly develops a shoulder. Consequently, the upper critical field of the impurity phase, for which we obtain a rough estimate by taking the midpoint of the resistive transition, has even greater anisotropy than the bulk BaNi₂As₂ superconductor.

Whether superconductivity can coexist with the low temperature orthorhombic structure and/or the spin-density wave (SDW) ground state is unclear. While coexistence of SDW and SC order is observed in the phase diagram of some doped compounds (e.g. [2]), whether or not this is microscopic coexistence remains to be determined. Of the stoichiometric compounds which superconduct in either the ZrCuSiAs [8, 9, 11] or ThCr₂Si₂ [15, 18, 19, 21, 22] structure, to our knowledge, none have yet been shown to coexist with a magnetic ground state. Microscopic confirmation of a low temperature orthorhombic possessing a spin-density wave is still needed in BaNi₂As₂. However, the similarity of the first order anomaly here to those found in the AFe₂As₂ systems [16, 23-26] where an orthorhombic SDW state has been determined [30, 31] is suggestive that a similar situation occurs in BaNi₂As₂. Thus, the clear observation of bulk superconductivity below the first order transition in BaNi₂As₂, may constitute the first example of coexistence of these three order parameters in a system with active T₂Pn₂ layers.

The observation of bulk superconductivity at 0.7 K in BaNi₂As₂ completes a form of continuity with regards to the presence of superconductivity in going from the ZrCuSiAs structure type to the ThCr₂Si₂ structure type, independent of whether the active layers are Fe₂As₂, Ni₂P₂, or Ni₂As₂. When the active layers are Fe₂As₂, the stoichiometric materials possess SDW order, and require doping or pressure to produce superconductivity. In the cases of Ni₂P₂ and Ni₂As₂ layers, the stoichiometric parent compounds possess superconductivity in both structure types. The biggest difference with these comparisons is that BaNi₂As₂ has a first order phase transition, while LaNiAsO does not.

In conclusion, we have synthesized single crystals of $BaNi_2As_2$, which possesses both a first order transition at 130 K, which is likely a combined structural and magnetic transition, and superconductivity at 0.7 K. It will be interesting

to study the dependence of doping, pressure, and isoelectronic substitution on these transitions to help elucidate the origin of superconductivity as well as the influence of competing orders.

We thank H Lee for assistance with the measurements. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy.

References

- [1] Ren Z-A et al 2008 Chin. Phys. Lett. 25 2215
- [2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. **130** 3296
- [3] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 *Nature* 453 761
- [4] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
- [5] Ren Z-A et al 2008 Europhys. Lett. 82 57002
- [6] Ren Z-A, Yang J, Lu W, Yi W, Che G-C, Dong X-L, Sun L-L and Zhou Z-X 2008 Mater. Res. Innov. 12 1
- [7] Cheng P, Fang L, Yang H, Zhu X, Mu G, Luo H, Wang Z and Wen H-H 2008 Sci. China G 51 719
- [8] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M and Hosono H 2007 *Inorg. Chem.* 46 7719
- [9] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M and Hosono H 2008 J. Solid State Chem. doi:10.1016/j.jssc.2008.04.033
- [10] Fang L, Yang H, Cheng P, Zhu X, Mu G and Wen H-H 2008 Preprint 0803.3978
- [11] Li Z et al 2008 Preprint 0803.2572
- [12] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc.
 128 10012
- [13] Rotter M, Tegel M and Johrendt D 2008 Preprint 0805.4630
- [14] Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhang X D, Zheng P, Wang N L and Luo J L 2008 Preprint 0806.1209
- [15] Sasmal K, Lv B, Lorenz B, Guloy A, Chen F, Xue Y and Chu C W 2008 Preprint 0806.1301
- [16] Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J and Chen X H 2008 Preprint 0806.4279
- [17] Jeevan H S, Hossain Z, Geibel C and Gegenwart P 2008 Preprint 0807.2530
- [18] Park T, Park E, Lee H, Klimczuk T, Bauer E D, Ronning F and Thompson J D 2008 J. Phys.: Condens. Matter 20 322204
- [19] Torikachvili M S, Budko S L, Ni N and Canfield P C 2008 Preprint 0807.0616
- [20] Alireza P L, Gillet J, Chris Ko Y T, Sebastian S E and Lonzarich G G 2008 *Preprint* 0807.1896
- [21] Mine T, Yanagi H, Kamiya T, Kamihara Y, Hirano M and Hosono H 2008 Solid State Commun. 147 111
- [22] Jeitschko W, Glaum R and Boonk L 1987 J. Solid State Chem. 69 93
- [23] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Poettgen R 2008 Phys. Rev. B 78 020503
- [24] Krellner C, Caroca-Canales N, Jesche A, Rosner H, Ormeci A and Geibel C 2008 *Preprint* 0806.1043
- [25] Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201
- [26] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Budko S L and Canfield P C 2008 Preprint 0806.4328
- [27] Pfisterer M and Nagorsen G 1980 Z. Naturf. B 35 703
- [28] Pfisterer M and Nagorsen G 1983 Z. Naturf. B 38 811
- [29] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
- [30] Huang Q, Qiu Y, Bao W, Lynn J W, Green M A, Chen Y, Wu T, Wu G and Chen X H 2008 Preprint 0806.2776
- [31] Jesche A et al 2008 Preprint 0807.0632